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Abstract

The fracture problem of a penny shaped crack in a piezoelectric ceramic cylinder surrounded by an infinite elastic
medium under in-plane normal mechanical and electrical loads is considered with the electric continuous boundary
conditions on the crack surface. By using the potential theory and Hankel transform, a system of dual integral
equations is obtained, and expressed to a Fredholm integral equation of the second kind. The mechanical and electrical
field equations and all sorts of field intensity factors of mode I are obtained, and the numerical values of various field
intensity factors for PZT-6B piezoelectric ceramic surrounded by several different elastic media are graphically shown
for a uniform load and a ring-shaped load, respectively. And the effects of the size of the piezoelectric cylinder and the
elastic material properties on various field intensity factors are obtained.
© 2002 Published by Elsevier Science Ltd.
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1. Introduction

Since piezoelectric ceramics which are typical brittle materials usually contain micro defects during the
sintering process, the equipments of piezoelectric ceramics have the risk of the abrupt fracture or the
functional disorder. Therefore, their fracture behaviors due to the micro defects under mechanical and
electrical loads have become great interest and a lot of significant researches have been presented recently.
Pak (1990) obtained the closed form solutions of field intensity factors and the energy release rate for an
infinite piezoelectric medium under anti-plane load by using a complex variable method. Park and Sun
(1995a) obtained the closed form solutions of the stress intensity factor, the total energy release rate and the
mechanical strain energy release rate for all three modes of fracture for an infinite piezoelectric medium
with insulated crack surfaces subjected to a combined mechanical and electrical loads by using Stroh
formalism approach. Shindo et al. (1997) obtained the solutions of the stress intensity factor and the energy

* Corresponding authors. Fax: +82-2-2123-2813.
E-mail addresses: sunnyspot@orgio.net (J.H. Yang), kyl2813@yahoo.co.kr (K.Y. Lee).

0020-7683/02/$ - see front matter © 2002 Published by Elsevier Science Ltd.
PII: S0020-7683(02)00620-0


mail to: sunnyspot@orgio.net

574 J.H. Yang, K. Y. Lee | International Journal of Solids and Structures 40 (2003) 573-590

release rate for the infinite strip perpendicular to the line crack under anti-plane load by using integral
transform method.

For the electric boundary conditions on the crack surfaces of a piezoelectric medium, several conditions
have been brought up and none explains the real phenomenon exactly. The impermeable electric boundary
condition on the crack surface has been widely used in the previous works (Pak, 1990; Park and Sun, 1995a;
Sosa, 1991). However, as pointed out by Dunn (1994), Sosa and Khutoryansky (1996), Zhang and Tong
(1996), Gao and Fan (1999a), Chen and Shioya (1999) and Shindo et al. (2001), the results under imper-
meable conditions show a non-physical singularity around the crack and disagree with experimental results.
For example, the total energy release rate in case of the impermeable boundary condition under an elec-
trical load only is always negative. Jackson (1976) suggested that the normal components of the electric
displacement and the tangential components of the electric field should be continuous across the crack
surface because real cracks in piezoelectric media are filled with vacuum or air. McMeeking (1989), Zhang
and Hack (1992), Zhang and Tong (1996) and Gao and Fan (1999b) adopted this electrical condition and
their results are reasonable.

The crack problems for the piezoelectric ceramics have been usually concentrated to simple line cracks.
But three-dimensional crack, such as a penny-shaped crack and an elliptical crack, exists in real media
frequently. Wang (1992) obtained the field intensity factors for an elliptical crack in infinite piezoelectric
media by using Fourier transform method with the electric impermeable condition. Wang and Huang
(1995) and Wang and Zheng (1995) showed the general solutions of the field intensity factors expressed by
potential functions for an elliptical crack of a three-dimensional piezoelectric medium under the electric
impermeable condition. Kogan and Hui (1996) showed the closed form solutions of the field intensity
factors for a spheroidal piezoelectric inclusion in an infinite piezoelectric medium by using potential theory,
and presented the results for a penny shaped crack as a limiting case of the original problem. Zhao et al.
(1997a,b) obtained the fundamental solutions for a unit concentrated displacement and an electric potential
discontinuity in a three-dimensional piezoelectric medium, and the stress intensity factor for a circular
crack in a piezoelectric solid. Recently, Chen and Shioya (2000) obtained the modes II and III stress in-
tensity factors of a penny shaped crack under arbitrary shear load by using Fabrikant’s elastic results
(Fabrikant, 1989). But all previous works were studied for the unbounded media and most of them treated
the uniform loads. Recently, the three-dimensional crack problem in a piezoelectric strip with finite
thickness under axisymmetric loads was investigated by us (Yang and Lee, 2001).

In this paper, we consider the penny shaped crack in a three-dimensional piezoelectric ceramic cylinder
surrounded by an elastic medium under both in-plane mechanical and electrical loads. The electric con-
tinuous boundary condition on the crack surfaces is adopted. The potential theory and Hankel transform
method are used to obtain a system of dual integral equations, which is then expressed to a Fredholm
integral equation of the second kind. The general forms and numerical results for various field intensity
factors are given for PZT-6B piezoelectric ceramics surrounded by several different elastic media for a
uniform load and a ring-shaped load, respectively. Consequently, the effects of the ratio of crack radius to
cylinder radius, the mechanical and electrical loads and the kind of elastic material on the crack propa-
gation are shown.

2. Problem statements

Consider a piezoelectric ceramic cylinder of diameter 25 surrounded by an elastic medium containing a
center penny-shaped crack of diameter 2a which is perpendicular to the side surface under the mechanical
and electrical normal loads as shown in Fig. 1. The superscripts (p) and (e) mean the piezoelectric and
elastic medium, respectively. The system of cylindrical coordinates (r, 0, z) is set at the center of the crack.
The piezoelectric ceramic is transversely isotropic with hexagonal symmetry and the z-axis is oriented in the
poling direction, and the elastic medium is also transversely isotropic. The ceramic is subjected to a normal
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Fig. 1. Piezoelectric cylinder with a penny shaped crack surrounded by an infinite elastic medium under in-plane normal mechanical

and electrical loads.

stress or strain at infinity, and the electrical loading condition of an electric displacement or electric field for
the piezoelectric ceramic is considered (Pak, 1990; Yang and Lee, 2001).
In the absence of body forces, the equations of motion are,
o) — oV gV eV gV B

oc) gV 0
r 1z — O — 0 1
6r+62+ r ’ 6r+62+r ’ (1)
where j = p,e, and the equation of electrostatics for the piezoelectric medium only is,

oD, oD. D,
+ =4+ =

0 2
or 0z r ’ @)
where g; (k =r,0,z) and o,, are normal and shear stresses, respectively and D, (k = r,z) are electric dis-
placements.

In the piezoelectric medium, using the gradient equations and the constitutive equations, Egs. (1) and (2)
become governing equations. To get the solutions which satisfy the governing equations, we define the
potentials in the forms,

3 3

0, 0d;

(p)ZE i (p):§:k, i
“r or’ " — "oz

i=1

3
0d;
9 ¢ = - kli_l7 (3)
; Oz

where u; (k = r,z) are displacements, ¢ is electric potential, @;(r,z) (i = 1,2, 3) are the potential functions,
ky; and k»; (i = 1,2, 3) are unknown constants in the piezoelectric medium.
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Using Egs. (1)-(3), we can get the governing equation in the form,

’b;, 100, b

ot r or 0z 0 (=123), “)
where

z,»:\/zn_i:s,-z (i=1,2,3), (5)
and n; (i = 1,2,3) are obtained from the following equation:

An} + Bn} + Cn; + D =0, (6)
where

2
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_ 2 2 2
B= (d11013 — ciiezdin + 2ci3eaudy — cricaudss + 2013615 + 2cizerses — Ca4€31 — 2011615633)/011,
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D = —cy(czdsy + €33) /e,

ky; and ky; (i = 1,2, 3) are determined from the following equations,

_ Cut (c13 4 caa)kii — (esr +esi)ka ek — ek, essky; + dysko

= )
c11 caskr; + i3+ cas —eisky ersky; +es + ez + diky

(8)

i

where ¢11, ¢12, €13, ¢33 and ca4 are the elastic moduli measured in a constant electric field; d;; and ds; are the
dielectric permittivities measured at a constant strain; and e;s, e3; and es3 are the piezoelectric constants in
the piezoelectric material.

In the elastic medium, we define the potentials in the forms,

) ~

.
0P, -~ 09;

(e) — E ! (e) — E ) !

“r — or’ ¥z ki oz’ ©)

i=1

where 5,-(1”,2) (i = 1,2) are the potential functions, and &; (i = 1,2) are unknown constants in the elastic
medium. Using Eqgs. (1), (9), gradient equations and the constitutive equations, we can get the governing
equation in the elastic medium in the form,

3*d; 109, azq~>,-_0 ( )
o2 r Or 02 ! R

1

(10)

where

21:%2512 (12152)3 (11)

and #; (i = 1,2) are obtained from the following equation,

51154475,42 + [513(513 + 2¢44) — 511533} f; + C33¢44 = 0, (12)
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k: (i = 1,2) are determined from the following equations:

fl _ 544 + (513 + E44)ki o 533121‘

i ~ - - 7 ~ ~
1 Caski + C13 + Ca4

(13)
where ¢i1, ¢12, C13, C33, Ca4 are the elastic moduli in the elastic medium.
We set up the following boundary conditions including the electric continuous boundary conditions:

aip)(r,O):O (0<r <a), u§p>(r,0):0 (a <r<b), (14)

D®(r,07) = DP(r,07) (0<r < a),
EP(.0°) = EP(r07) (0<r <a), )
¢(r,0)=0 (a<r<b)

o (r,0)=0 (0<r<b), (16)
ulP (b,2) = u¥(b,z) (0<z < o0), (17)
ul? (b,z) = u®(b,z) (0<z< oc0), (18)
a®(b,z) = 6% (b,z) (0<z < o), (19)
a®(b,2) =9 (b,z) (0<z< ), (20)
D, (b,z) =0 (0<z< o0). (21)
There may be the following four possible cases of combined mechanical and electrical loads at infinity,
(Case 1) a.(r,00) =5(r),  D.(r,00) = D(r), (22)
(Case 2) &.(r,00) = &(r), E.(r,00) = E(r), (23)
(Case 3) o,(r,00) = a(r), E.(r,00) = E(r), (24)
(Case 4) &.(r,00) = &(r), D,(r,00) = D(r), (25)

where (r), &(r), D(r) and E(r) are the magnitudes of applied stress, strain, electric displacement and electric
field, respectively.

3. Solution procedure

Applying Hankel transform of order 0 to Eq. (4), we can get the potential functions in the piezoelectric
medium in the form,

~1 r

&;(r,z) = / z [A,»(f)]o <§—> cos(&z) + B;(&) exp( — &siz)Jo(&r) | dE, (26)
0 i

where 4;(¢) and B;(&) (i = 1,2,3) are the unknown functions to be determined by boundary conditions,

J.( ) is the Bessel function of the first kind of order n and 7,( ) i s the modified Bessel function of the first

kind of order n.
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The field equations are obtained in the forms,

3 00 3 00
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i=1
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3 00 3 00
o0 =3 B / AR, (f) sin(c2)de + 3y / EB,(&)1 (&) exp(—si) &,

3 ) 00
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where

Fii = (cxsky — esska)s; —cis,  Fy = (exski + dsskai)s; — e,
Fyi = [cas(1 + kip) — erskalsi, (i=1,2,3), (28)

and a(r), b(r), ¢(r) = cua(r) — exsb(r) and d(r) = exa(r) + dy3b(r) are the unknown functions to be de-
termined from the applied loading conditions.
Similarly, we can get the potential functions in the elastic medium in the form,
~ 1

Di(r,z) = , ¢

where C;(&) (i = 1,2) are the unknown functions to be determined by boundary conditions, and K,,( ) is the
modified Bessel function of the second kind of order x.
The field equations are in the elastic medium obtained in the forms,

o

S C(E)Ko (“) cos(éz) dé, (29)

i

=k / ot (g )Sin(éZ)dé,

2
i= !

where

Fii = 533/%5,-2 —én, Fy= Caa(1 + ];i)@‘ (i=1,2). (31)
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Eqgs. (22)-(25), the following coefficients are obtained:

(Case 1) a(r) = % b(r) = %‘ﬁg@ () =a(r),  d(r)=D(r)
(32)
(Case 2) a(r)=&(r),  B()=E(r),  &(r)=cnilr) — enE(r),  d(r) = eng(r) + duwE(r),
(33)
(Case 3) a(r) = ‘?(”)%?E(r)’ b(r)=E(r), er)=a(r), dir)= exo(r) + (63;;36233 +e3,)E(r )7
(34)
(Case 4) a(r)=z(r), b(r) :W, o(r) = et 933;?5” —esD) G0y =D,
(35)
From Egs. (15)—(21), (27) and (30), the following relations between the coefficients are obtained,
B, (&) = M,B, (), B3(&) = M3B, (&),
4() = ﬁ > { MFalhna (€D (&) — hos(E)hna(E)] + has() s (EVhsal) — ia(E)sa(E)]
T hs(E)a(EVhn(E) — ha(Ehn( @A) + Mihalha(hsa(E) — ha(Eha(E)fa(E)
% ia(@)hns(€) — b (@ fs(E) + "g (&) (&) — hls(f)hzz(f)]fm(f)}y
(&) = ﬁ > {Mmi[hza(@hm (&) — o (E)hss ()] + h(E) s (E)hss(E) — Py (£ (£)]
+ hsi(E)[M3(E)ha1 (&) — hii (E)has(E)))f1:(E) + MiChei[hii (E)haz (&) — hiz(E)hs (&)] f2(E)
%h (s (a1 (8) — iy (O (Ol ) +?"hg,-[h13<¢>h21<5> _ h11<5>h23<z:>]f4,-(5>},
As(&) = ﬁ > { M(Fulhoy (9)hsa(€) — ha(E)hsy ()] + s (E)lia (Vs (€) — Iy (€l )]
(@) () (&) — ha(E)har (OFis(E) + Mihalha( ) (&) — uy (E)hsa(E)]f(E)
+ %hﬂ[hll (é)h22<é) - hlz(é)hZI (é)]ﬁl(é) + ?l hSi[hll (é)h22(£> - h12<6>h21 (é)]f4z(€> }7
€0 = gz 2o {oun (520 + M
Gy (&) = Kl(élb/iz) ; {gSill (%)Az(f) +Mig4if1i(f)}a (36)
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where

_ B3tkassy — Fikosy _ Fykyst — Faknsy

- ) 3 = )
Fs3kyosy — Fakysss Fa3kysy — Fypkasss

A(E) = i (E)[han(E)h33(E) — haz(E)h3a(E)] + 12 (&) [h3 (E)h31 (&) — hai (E)haz ()]
+ hi3(E)[h21 (E)h32(E) — hn(E)h3i ()],

M =1, M

oy 2 [ nBi(n)Ji(nb) o 2 [% Bi(n)Jo(nb) (37)
n@ =y [P e pe =] [

oy 2 [T 0’Bi(n)Jo(nb) oy 2 [T w’Bi(n)a(nb)

= [T g =2 [T IR

F;” = [615(1 +k1[) +d11k2,‘]517

and the quantities 7;(&) (j =1-5, i =1-3), h; (j =6-8, i =1-3) and g; (j = 1-4, i = 1-3) are given by
Eq. (A.1) in Appendix A.
From Eq. (14), a system of dual integral equation is obtained,

< IR F F
7/0 g{#m<?)m(f)+s—1%210<?),42(é)+s—‘§310<?>/13(5)}d5

81 1 2 3

+ /OC My + MoFin + MaF) B (E)Jo(Er)dé = —e(r) (0<r < a), (38)
0

/OOO[Mlk”sl + Mokipsy + Mskyzs3)B1 (E)Jo(Er)dE =0 (a <r<b).
Eq. (38) may be solved by using the function y/(«) defined by

Bi(&) = [ wisin(é) do (39)
where (0) = 0.

Inserting Egs. (36), (37) and (39) into Eq. (38), we obtain a Fredholm integral equation of the second
kind in the form,

a 2 *ore(r)
b+ e pap- 2 [ g (40)
where
my = —(M\Fyy + MyFy, + M3F3), (41)

and L(a, f8) is given by Eq. (B.1) in Appendix B.
Each kind of the field intensity factors is obtained in the form,

K’ =K; = rlirg V2n(r —a)o.(r,0) = \/gmolﬂ(a), (42)
KP = rllrzl+ 2n(r — a)D,(r,0) = \/gmllﬁ(a), (43)

r—at

K = lim /2n(r — a)e,(r,0) = \/gmzlp(a), (44)
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K® = lim \/2n(r — a)E.(r,0) = \/Emyp(a), (45)
r—at a
where
my = —[FuM, + Fh)M, + F>3M5],
my = —[k“S%M] + kle;MQ + kl}S%M}], (46)

my = —[knstMy + knsMs + kazsaMs],
and K°, KP, K* and K¥ are the stress intensity factor, electric displacement intensity factor, strain intensity
factor and electric field intensity factor, respectively.
4. Numerical results and discussion
Material properties of PZT-6B ceramic are as follows (Wang and Huang, 1995; Wang and Zheng, 1995),
elastic constants (10'° N/m?): ¢;; = 16.8, c¢1» = 6.0, c13 = 6.0, ¢33 = 16.3, 4y = 2.71;
piezoelectric constants (C/m?): e;s = 4.6, e3; = —0.9, e33 = 7.1;
dielectric permittivities (107! F/m): di; = 36, d33 = 34;
and the material properties of several elastic media are shown in Table 1.
4.1. Example 1. Uniform loads

Let the following loads be applied:

o,(r,00) =0y (for Cases 1 and 3),
&.(r,00) =& (for Cases 2 and 4),
D.(r,00) = —D,, (for Cases 1 and 4),
E.(r,00) = —E,, (for Cases 2 and 3),

(47)

where oy, &, Dy and E, are the magnitudes of applied constant stress, strain, electric displacement and
electric field, respectively. “="" in Eq. (47) means that the electric loading directions are the same as the
poling direction as shown in Fig. 1. In this case, a Fredholm integral equation of the second kind is ob-
tained from Eq. (40) in the form,

1
(=) + / W (H)K(Z, H)dH = &, (48)
0

Table 1
The material properties of elastic medium (10' N/m?)

Material Elastic constants

Ci1 C12 C13 33 Ca4
Boron-epoxy 2.94 1.37 2.46 20.89 0.81
Graphite epoxy 0.83 0.28 0.03 8.68 0.42

E-glass epoxy 1.49 0.66 0.52 4.73 0.48
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where

mo 49
P(x) = = 22y (ax), )

2 coa

co =09 (Cases | and 3)
= 338 + 633E() (Case 2)

: (50)
_ (e33da3 + €33)€0 + ex3Dy (Case 4).
ds3
The field intensity factors become as follows:
2
K”:E\/naco‘lf(l), (51)
D 2 ny
K’ ==vma—cy¥(1), (52)
s my
2 nmy
K ==y/ma—c,¥(1), (53)
T my
E 2 ms
K* ==y/ma—c,P(1). (54)
T my

Eq. (48) is solved numerically using Gaussian quadrature formula. From the above equations we can
conclude that in Case 1 the stress intensity factor is dependent on the mechanical load, and the electric
displacement intensity factor depends on the material properties and the mechanical load, but not on the
electrical load. These tendencies are consistent with those of Gao and Fan (1999a) in two-dimensional
mixed mode problem and those of Yang and Lee (2001) in three-dimensional opening mode problem. Also
the field intensity factors are independent upon the electrical loads under constant stress loads (Cases 1 and
3), but dependent upon them under constant strain loads (Cases 2 and 4). These results agree with those of
Shindo et al. (1997) and Zhang and Hack (1992) in two-dimensional mode III problem.

The change of the normalized stress intensity factor for Case 1 according to the ratio of crack radius to
PZT-6B piezoelectric cylinder radius and various elastic media under uniform loads are shown in Fig. 2.
The normalized stress intensity factor increases with increase of the ratio a/b for graphite epoxy and E-glass
epoxy, but it decreases for boron-epoxy.

According to Satapathy and Parhi (1979), the similar behavior of stress intensity factor is obtained in the
crack problem for an elastic cylinder surrounded by an another elastic infinite medium. They showed that
the stress intensity factor may increase or decrease according to the ratio of crack radius to cylinder radius
with the combination of inside and outside materials. From the observation for the effect of various ma-
terial properties in our piezoelectric problem, we find out that ¢33 only affects the increase or decrease of the
stress intensity factor with the variation of the ratio of the crack radius to the cylinder radius. Fig 3 shows
that the stress intensity factor increases with increase of the ratio a/b when cs; of the inside piezoelectric
medium is larger than ¢;; of the outside elastic medium. Even though ¢4y affects the increase or decrease of
the stress intensity factor in mode III problem (Sih and Chen, 1981), in model I problem ¢33 does.

The variations of the normalized field intensity factors for Case 1 according to the ratio of crack radius
to PZT-6B piezoelectric cylinder radius in the case surrounded by graphite epoxy under uniform loads are
shown in Fig. 4. It is shown that the normalized field intensity factors increase with increase of the ratio
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1.20

Case 1

15— === Boron-epoxy

Graphite-epoxy /

— — E-glass epoxy /

K/ (2¢,)(alm)"

0.95 1 | -
0.0 0.2 04 0.6 0.8

Fig. 2. Change of the normalized stress intensity factor with the ratio of crack radius to PZT-6B cylinder radius and several elastic
media under uniform loads in Case 1.

1.20

r Case 1, boron epoxy
(PZT-6B : ¢;;=16.3X10'*N/m?)

115 —

&,=6.5X 101 N/m?
T &,=9.5X10°N/m?

ol T €,,=20.89X10'°N/m?: default value

K/ (26,)(a/m)*

0.0 0.2 0.4 0.6 08

ab

Fig. 3. Change of the normalized stress intensity factor with the ratio of crack radius to PZT-6B cylinder radius and ¢;; of the boron
epoxy under uniform loads in Case 1.

a/b, and it is noted that the stress intensity factor and the electric field intensity factor are much larger than
the strain intensity factor and the electric displacement intensity factor.

Fig. 5 shows the change of K°/2(a/n)"/* with the applied electric field E, and the ratio a/b in the case
surrounded by graphite epoxy under uniform loads. It is noted that the crack size affects a little to the stress
intensity factor in case of electric loading alone. And it is concluded from Fig. 5 that cracks may or not
propagate according to the direction and value of the applied electric field. This tendency is different from
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Fig. 4. Change of the normalized field intensity factors with the ratio of crack radius to PZT-6B cylinder radius in the case surrounded
by graphite epoxy under uniform loads in Case 1.

Case 2, graphite epoxy .
g,=1.0 X 10%,2=10 mm

Ko/ 2(a/m)"  (X10'N/m?)

1 1 Il I 1 I Il

0
Eo (X10°V/m)

Fig. 5. Change of normalized stress intensity factor K” /2((1/1‘5)1/ * with the applied electrical field Ey in case of PZT-6B ceramic and
graphite epoxy under uniform loads in Case 2.

the results of the electric impermeable condition on the crack surface (Pak, 1990), and agrees with the
experimental observations presented by Park and Sun (1995b).

Park and Sun (1995b) got the stress intensity factor, the total energy release rate and the mechanical
strain energy release rate for a crack with the electric impermeable condition in an infinite piezoelectric
medium for the three fracture mode theoretically and the experimentally. Their analytic results showed that
the electric loading alone cannot affect the stress intensity factor and the total energy release rate becomes
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negative, and they insisted that the stress intensity factor and the total energy release rate are not suitable
for describing the fracture behavior of piezoelectric ceramics. But it is important to remember that those
results were caused by the electrical impermeable condition on the crack surfaces.

The tendency of the variation of the stress intensity factor with the applied electric displacement D, in
Case 4 were observed to the similar with that with the electric field in Case 2.

4.2. Example 2. Ring-shaped load

Let normal loading per a unit area, p apply on the region of 7 <r <r,, 0°< 0 <360° and the electrical
loads be arbitrary as shown in Fig. 6. Then, the applied loads can be expressed as follows:

, forr <r<m,
o.(r,00) = {57 elsel;he:e, "2 (for Cases 1 and 3),

D.(r,00) = D(r), (for Case 1), (55)

E.(r,o0) = E(r), (for Case 3).

Using Egs. (32), (34) and (55), a Fredholm integral equation of the second kind is obtained from Eq. (40)
in the form,

p
G

g2 LA LI,

?___:_‘frf_.f.'--f.--t.frf_’f{_:

e D@, E@
, NSNS e
. .. \\\\\\\x\\“ﬁ,\s\ﬁ . J
\\:::55 :"Ef/,

T
'\ Q,\\\“:I\L\\\\\\)j\ k

\\i\\\{\\\\\\k

Fig. 6. Piezoelectric cylinder with a penny shaped crack surrounded by an infinite elastic medium under a ring-shaped normal
mechanical load and general electrical load.
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1
‘P(E)Jr/ Y(H)K(Z,H)dH = &,
0
where
o B T my
E=- H== P(x)==—
a 2 pa \/1 . (rl/oc)2

and the kernel K(Z, H) is the same as Example 1.
The field intensity factors become as follows:

K %\/Ep(\/l —a} /1 —a§> w(1),

2 m
KD:E\/am_;p<\/1 —a} — \/1 —a%)?’(l),

X 2 my
K*=— — 1—ad—4/1-a3 )Pl
einep(\1- i —yi=a) v

2
KE :E,/TcaZ—Zp<\/l —al— \/1 —a%) ¥ (1),

where a; = r|/a and a, = r,/a.
The Fredholm integral equation is solved numerically by the same method as Example 1. Various field
intensity factors are obtained from Egs. (58)—(61). In this example, only Cases 1 and 3 are considered and
the results that the field intensity factors are not affected from the applied electrical loads are obtained.

Fig. 7 shows the variation of the normalized stress intensity factor with the ratio of crack radius to
cylinder radius a/b under a ring-shaped mechanical load (a; — a; = 0.1) and an arbitrary electrical load in

K?/ (2p)(a/m)"™
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Fig. 7. Change of the normalized stress intensity factor with the ratio of crack radius to PZT-6B cylinder radius under a ring-shaped
mechanical load (a; — a; = 0.1) and an arbitrary electrical load in Case 1.
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Fig. 8. Change of the normalized stress intensity factor with the ratio of crack radius to PZT-6B cylinder radius under a ring-shaped
mechanical load (a; = 0.9, @; = 0.0,0.4,0.8) and an arbitrary electrical load in Case 1.
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Fig. 9. Change of the normalized stress intensity factor with the ratio of crack radius to PZT-6B cylinder radius under a circular
mechanical load and an arbitrary electrical load in Case 1.

Case 1. The normalized stress intensity factor decreases with increase of the ratio a/b in case of boron
epoxy and increases with increase of a/b in case of graphite epoxy, and the value increases as the position of

the applied load approaches near the crack border.

The changes of the normalized stress intensity factor with the ratio of crack radius to cylinder radius a/b
under a ring-shaped mechanical load (a; = 0.9, a; = 0.0,0.4,0.8) and an arbitrary electrical load in Case 1
are shown in Fig. 8. As the value of a; decreases, the normalized stress intensity factor increases. When the
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value of a; becomes from 0.8 to 0.4, the normalized stress intensity factor increases very much, but when
that becomes from 0.4 to 0.0, the value increases a little. This implies that the load apart from the crack
border affects the normalized stress intensity factor a little.

Fig. 9 shows the variation of the normalized stress intensity factor with the ratio of crack radius to
cylinder radius a/b under a circular mechanical load and an arbitrary electrical load in Case 1. It is the
limiting case as a; becomes 0. Also as the area of the applied load increase, the normalized stress intensity
factor increases. And as a, becomes near 1.0, the stress intensity factor increases very much.

5. Conclusions

The solutions of the field equations and the field intensity factors for a penny shaped crack in a
transversely isotropic piezoelectric ceramic cylinder surrounded by an infinite elastic medium under in-
plane mechanical and electrical loads are obtained by the potential theory and the integral transform
method. The continuous electric boundary conditions are used on the crack surfaces and the justification of
them are discussed. Various field intensity factors are obtained from the solution of a Fredholm integral
equation of the second kind, and the field intensity factors under the uniform mechanical and electrical
loads as well as a ring-shaped mechanical load with an arbitrary electrical load are shown numerically. The
tendency of the field intensity factors with the ratio of crack radius to cylinder radius is different for the
various elastic medium. When the boron-epoxy is used, the field intensity factors decrease with increase of
the ratio of crack radius to cylinder radius. But, the tendency is opposite for graphite-epoxy and E-glass
epoxy. This behavior is due to the ratio of material properties c33/¢;; (inside medium/outside medium).
Therefore, we can reduce the fracture of the electric equipments by selecting the surrounded elastic material
properly.

The stress intensity factor may increase or decrease according to the electric loading condition in Cases 2
and 4, and this tendency agnrees with the previous experimental results (Park and Sun, 1995b).

Appendix A

The h; (&) (j=1-5,i=1-3), h; (j =6-8, i=1-3) and g; (j = 1-4, i = 1-3) in Eq. (36) are as follows:
Fy; b
hi(é) = S—411 (6 )

1 Sl
hai(€) :klilo(é_b) — kgul; éb)Ko(@)/[ﬁ(@)
Si Si S1 S1
_I€2g3ill(i_b>K0< )
Fi, (b b\ Fu (&b &b £b
o-5(2)-52)-Fon 2 (3
2)e(2) (2) - on(2)e(2) /()
S S1 S1 S2 S; $7 $>
Je(3) /5(2)
§2 S
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(&) = klgz,Ko<5b>/ (51’) +k2g4,1<0(5b)/1<1<5~—b>,
S1 82 $2
Py &b b\ &b 2b
hsi(&) = 2 gzzK()(Sl )/K1<§> — Z—S/ngle(sl )/KI(E)
F b &b il b &b
+ 2 g4zK0(S2>/K1<g> 2—S~%g4iK2<g>/K1<g>7 A

C11
hei = —kusi, hai = Fs;s;, hsi = -5 %
1 51 (B F 1 5 _
gu:ﬁfl 2z ) gZiZﬁT(SFZZ 5F;),
C44(k2 - kl) Si Si $2 C44(k2 k]) 82
1 5 (Fy Fy 1 5 ~
g=————— | -2, g = ———— = (51 — 5, F),
C44(k2 — kl) S§; S S C44(k2 k]) S1
where
c ~ ¢
Fsi = (cizki; — earky)s? — %7 F= anS - %
Appendix B

The L(a, ) in Eq. (40) is as follows:
_ 4 &Y Fy, [ 1 . (& . (EB\[Fu be
L) = Sy 2 ZM—/ st o () s (50){ Semcamon ()
Oy nok, (’)—5) A9 omex (@) e ©hi©)Ky (5)

S; S; S; S Si Si
h l b hs; b¢
s7 h2k(é)hll(é)KO<S_?) Sg I (& )hzz(é)Kz(?) }df, (B.1)
where
1, for an even permutation of 123,
g =4 —1, for an odd permutation of 123, (k,/=1,2,3).
0, otherwise,
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