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Abstract

The fracture problem of a penny shaped crack in a piezoelectric ceramic cylinder surrounded by an infinite elastic

medium under in-plane normal mechanical and electrical loads is considered with the electric continuous boundary

conditions on the crack surface. By using the potential theory and Hankel transform, a system of dual integral

equations is obtained, and expressed to a Fredholm integral equation of the second kind. The mechanical and electrical

field equations and all sorts of field intensity factors of mode I are obtained, and the numerical values of various field

intensity factors for PZT-6B piezoelectric ceramic surrounded by several different elastic media are graphically shown

for a uniform load and a ring-shaped load, respectively. And the effects of the size of the piezoelectric cylinder and the

elastic material properties on various field intensity factors are obtained.

� 2002 Published by Elsevier Science Ltd.
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1. Introduction

Since piezoelectric ceramics which are typical brittle materials usually contain micro defects during the

sintering process, the equipments of piezoelectric ceramics have the risk of the abrupt fracture or the

functional disorder. Therefore, their fracture behaviors due to the micro defects under mechanical and

electrical loads have become great interest and a lot of significant researches have been presented recently.

Pak (1990) obtained the closed form solutions of field intensity factors and the energy release rate for an
infinite piezoelectric medium under anti-plane load by using a complex variable method. Park and Sun

(1995a) obtained the closed form solutions of the stress intensity factor, the total energy release rate and the

mechanical strain energy release rate for all three modes of fracture for an infinite piezoelectric medium

with insulated crack surfaces subjected to a combined mechanical and electrical loads by using Stroh

formalism approach. Shindo et al. (1997) obtained the solutions of the stress intensity factor and the energy
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release rate for the infinite strip perpendicular to the line crack under anti-plane load by using integral

transform method.

For the electric boundary conditions on the crack surfaces of a piezoelectric medium, several conditions

have been brought up and none explains the real phenomenon exactly. The impermeable electric boundary
condition on the crack surface has been widely used in the previous works (Pak, 1990; Park and Sun, 1995a;

Sosa, 1991). However, as pointed out by Dunn (1994), Sosa and Khutoryansky (1996), Zhang and Tong

(1996), Gao and Fan (1999a), Chen and Shioya (1999) and Shindo et al. (2001), the results under imper-

meable conditions show a non-physical singularity around the crack and disagree with experimental results.

For example, the total energy release rate in case of the impermeable boundary condition under an elec-

trical load only is always negative. Jackson (1976) suggested that the normal components of the electric

displacement and the tangential components of the electric field should be continuous across the crack

surface because real cracks in piezoelectric media are filled with vacuum or air. McMeeking (1989), Zhang
and Hack (1992), Zhang and Tong (1996) and Gao and Fan (1999b) adopted this electrical condition and

their results are reasonable.

The crack problems for the piezoelectric ceramics have been usually concentrated to simple line cracks.

But three-dimensional crack, such as a penny-shaped crack and an elliptical crack, exists in real media

frequently. Wang (1992) obtained the field intensity factors for an elliptical crack in infinite piezoelectric

media by using Fourier transform method with the electric impermeable condition. Wang and Huang

(1995) and Wang and Zheng (1995) showed the general solutions of the field intensity factors expressed by

potential functions for an elliptical crack of a three-dimensional piezoelectric medium under the electric
impermeable condition. Kogan and Hui (1996) showed the closed form solutions of the field intensity

factors for a spheroidal piezoelectric inclusion in an infinite piezoelectric medium by using potential theory,

and presented the results for a penny shaped crack as a limiting case of the original problem. Zhao et al.

(1997a,b) obtained the fundamental solutions for a unit concentrated displacement and an electric potential

discontinuity in a three-dimensional piezoelectric medium, and the stress intensity factor for a circular

crack in a piezoelectric solid. Recently, Chen and Shioya (2000) obtained the modes II and III stress in-

tensity factors of a penny shaped crack under arbitrary shear load by using Fabrikant�s elastic results

(Fabrikant, 1989). But all previous works were studied for the unbounded media and most of them treated
the uniform loads. Recently, the three-dimensional crack problem in a piezoelectric strip with finite

thickness under axisymmetric loads was investigated by us (Yang and Lee, 2001).

In this paper, we consider the penny shaped crack in a three-dimensional piezoelectric ceramic cylinder

surrounded by an elastic medium under both in-plane mechanical and electrical loads. The electric con-

tinuous boundary condition on the crack surfaces is adopted. The potential theory and Hankel transform

method are used to obtain a system of dual integral equations, which is then expressed to a Fredholm

integral equation of the second kind. The general forms and numerical results for various field intensity

factors are given for PZT-6B piezoelectric ceramics surrounded by several different elastic media for a
uniform load and a ring-shaped load, respectively. Consequently, the effects of the ratio of crack radius to

cylinder radius, the mechanical and electrical loads and the kind of elastic material on the crack propa-

gation are shown.

2. Problem statements

Consider a piezoelectric ceramic cylinder of diameter 2b surrounded by an elastic medium containing a

center penny-shaped crack of diameter 2a which is perpendicular to the side surface under the mechanical

and electrical normal loads as shown in Fig. 1. The superscripts (p) and (e) mean the piezoelectric and

elastic medium, respectively. The system of cylindrical coordinates ðr; h; zÞ is set at the center of the crack.
The piezoelectric ceramic is transversely isotropic with hexagonal symmetry and the z-axis is oriented in the
poling direction, and the elastic medium is also transversely isotropic. The ceramic is subjected to a normal

574 J.H. Yang, K.Y. Lee / International Journal of Solids and Structures 40 (2003) 573–590



stress or strain at infinity, and the electrical loading condition of an electric displacement or electric field for

the piezoelectric ceramic is considered (Pak, 1990; Yang and Lee, 2001).

In the absence of body forces, the equations of motion are,

orðjÞ
r

or
þ orðjÞ

rz

oz
þ rðjÞ

r � rðjÞ
h

r
¼ 0;

orðjÞ
rz

or
þ orðjÞ

z

oz
þ rðjÞ

rz

r
¼ 0; ð1Þ

where j ¼ p; e, and the equation of electrostatics for the piezoelectric medium only is,

oDr

or
þ oDz

oz
þ Dr

r
¼ 0; ð2Þ

where rk (k ¼ r; h; z) and rrz are normal and shear stresses, respectively and Dk (k ¼ r; z) are electric dis-

placements.

In the piezoelectric medium, using the gradient equations and the constitutive equations, Eqs. (1) and (2)

become governing equations. To get the solutions which satisfy the governing equations, we define the

potentials in the forms,

uðpÞ
r ¼

X3
i¼1

oUi

or
; uðpÞ

z ¼
X3
i¼1

k1i
oUi

oz
; / ¼ �

X3
i¼1

k2i
oUi

oz
; ð3Þ

where uk (k ¼ r; z) are displacements, / is electric potential, Uiðr; zÞ (i ¼ 1; 2; 3) are the potential functions,
k1i and k2i (i ¼ 1; 2; 3) are unknown constants in the piezoelectric medium.

Fig. 1. Piezoelectric cylinder with a penny shaped crack surrounded by an infinite elastic medium under in-plane normal mechanical

and electrical loads.
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Using Eqs. (1)–(3), we can get the governing equation in the form,

o2Ui

or2
þ 1

r
oUi

or
þ o2Ui

oz2i
¼ 0 ði ¼ 1; 2; 3Þ; ð4Þ

where

zi ¼
zffiffiffiffi
ni

p ¼ siz ði ¼ 1; 2; 3Þ; ð5Þ

and ni (i ¼ 1; 2; 3) are obtained from the following equation:

An3
i þ Bn2

i þ Cni þ D ¼ 0; ð6Þ

where

A ¼ c44d11 þ e215;

B ¼ d11c213
�

� c11c33d11 þ 2c13c44d11 � c11c44d33 þ 2c13e215 þ 2c13e15e31 � c44e231 � 2c11e15e33
��

c11;

C ¼ c33c44d11
�

� c213d33 þ c11c33d33 � 2c13c44d33 þ c33e215 þ 2c33e15e31

þ c33e231 � 2c13e15e33 � 2c13e31e33 � 2c44e31e33 þ c11e233
��

c11;

D ¼ �c44 c33d33
�

þ e233
��

c11;

ð7Þ

k1i and k2i (i ¼ 1; 2; 3) are determined from the following equations,

ni ¼
c44 þ ðc13 þ c44Þk1i � ðe31 þ e51Þk2i

c11
¼ c33k1i � e33k2i

c44k1i þ c13 þ c44 � e15k2i
¼ e33k1i þ d33k2i

e15k1i þ e15 þ e31 þ d11k2i
; ð8Þ

where c11, c12, c13, c33 and c44 are the elastic moduli measured in a constant electric field; d11 and d33 are the
dielectric permittivities measured at a constant strain; and e15, e31 and e33 are the piezoelectric constants in
the piezoelectric material.

In the elastic medium, we define the potentials in the forms,

uðeÞ
r ¼

X2
i¼1

oeUUi

or
; uðeÞ

z ¼
X2
i¼1

~kki
oeUUi

oz
; ð9Þ

where eUU iðr; zÞ (i ¼ 1; 2) are the potential functions, and ~kki (i ¼ 1; 2) are unknown constants in the elastic
medium. Using Eqs. (1), (9), gradient equations and the constitutive equations, we can get the governing

equation in the elastic medium in the form,

o2 eUU i

or2
þ 1

r
oeUUi

or
þ o2 eUUi

o~zz2i
¼ 0 ði ¼ 1; 2Þ; ð10Þ

where

~zzi ¼
zffiffiffiffi
~nni

p ¼ ~ssiz ði ¼ 1; 2Þ; ð11Þ

and ~nni (i ¼ 1; 2) are obtained from the following equation,

~cc11~cc44~nn2
i þ ~cc13ð~cc13

h
þ 2~cc44Þ � ~cc11~cc33

i
~nni þ ~cc33~cc44 ¼ 0; ð12Þ
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~kki (i ¼ 1; 2) are determined from the following equations:

~nni ¼
~cc44 þ ð~cc13 þ ~cc44Þ~kki

~cc11
¼ ~cc33~kki

~cc44~kki þ ~cc13 þ ~cc44
; ð13Þ

where ~cc11, ~cc12, ~cc13, ~cc33, ~cc44 are the elastic moduli in the elastic medium.

We set up the following boundary conditions including the electric continuous boundary conditions:

rðpÞ
z ðr; 0Þ ¼ 0 ð06 r < aÞ; uðpÞz ðr; 0Þ ¼ 0 ða < r < bÞ; ð14Þ

DðpÞ
z ðr; 0þÞ ¼ DðpÞ

z ðr; 0�Þ ð06 r < aÞ;
EðpÞ

r ðr; 0þÞ ¼ EðpÞ
r ðr; 0�Þ ð06 r < aÞ;

/ðr; 0Þ ¼ 0 ða < r < bÞ;
ð15Þ

rðpÞ
rz ðr; 0Þ ¼ 0 ð06 r < bÞ; ð16Þ

uðpÞ
r ðb; zÞ ¼ uðeÞ

r ðb; zÞ ð06 z < 1Þ; ð17Þ

uðpÞz ðb; zÞ ¼ uðeÞ
z ðb; zÞ ð06 z < 1Þ; ð18Þ

rðpÞ
r ðb; zÞ ¼ rðeÞ

r ðb; zÞ ð06 z < 1Þ; ð19Þ

rðpÞ
rz ðb; zÞ ¼ rðeÞ

rz ðb; zÞ ð06 z < 1Þ; ð20Þ

Drðb; zÞ ¼ 0 ð06 z < 1Þ: ð21Þ
There may be the following four possible cases of combined mechanical and electrical loads at infinity,

ðCase 1Þ rzðr;1Þ ¼ �rrðrÞ; Dzðr;1Þ ¼ DðrÞ; ð22Þ

ðCase 2Þ ezðr;1Þ ¼ �eeðrÞ; Ezðr;1Þ ¼ EðrÞ; ð23Þ

ðCase 3Þ rzðr;1Þ ¼ �rrðrÞ; Ezðr;1Þ ¼ EðrÞ; ð24Þ

ðCase 4Þ ezðr;1Þ ¼ �eeðrÞ; Dzðr;1Þ ¼ DðrÞ; ð25Þ
where �rrðrÞ, �eeðrÞ, DðrÞ and EðrÞ are the magnitudes of applied stress, strain, electric displacement and electric

field, respectively.

3. Solution procedure

Applying Hankel transform of order 0 to Eq. (4), we can get the potential functions in the piezoelectric

medium in the form,

Uiðr; zÞ ¼
Z 1

0

1

n
AiðnÞI0

nr
si


 �
cosðnzÞ

�
þ BiðnÞ expð � nsizÞJ0ðnrÞ



dn; ð26Þ

where AiðnÞ and BiðnÞ (i ¼ 1; 2; 3) are the unknown functions to be determined by boundary conditions,
Jnð Þ is the Bessel function of the first kind of order n and Inð Þ i s the modified Bessel function of the first

kind of order n.
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The field equations are obtained in the forms,

uðpÞ
z ¼ �

X3
i¼1

k1i

Z 1

0

AiðnÞI0
nr
si


 �
sinðnzÞdn �

X3
i¼1

k1isi

Z 1

0

BiðnÞJ0ðnrÞ expð�nsizÞdn þ �aaðrÞz;

/ ¼
X3
i¼1

k2i

Z 1

0

AiðnÞI0
nr
si


 �
sinðnzÞdn þ

X3
i¼1

k2isi

Z 1

0

BiðnÞJ0ðnrÞ expð�nsizÞdn � �bbðrÞz;

rðpÞ
z ¼ �

X3
i¼1

F1i

s2i

Z 1

0

nAiðnÞI0
nr
si


 �
cosðnzÞdn þ

X3
i¼1

F1i

Z 1

0

nBiðnÞJ0ðnrÞ expð�nsizÞdn þ �ccðrÞ;

rðpÞ
rz ¼ �

X3
i¼1

F3i

s2i

Z 1

0

nAiðnÞI1
nr
si


 �
sinðnzÞdn þ

X3
i¼1

F3i

Z 1

0

nBiðnÞJ1ðnrÞ expð�nsizÞdn;

Dz ¼ �
X3
i¼1

F2i

s2i

Z 1

0

nAiðnÞI0
nr
si


 �
cosðnzÞdn þ

X3
i¼1

F2i

Z 1

0

nBiðnÞJ0ðnrÞ expð�nsizÞdn þ �ddðrÞ;

ð27Þ

where

F1i ¼ ðc33k1i � e33k2iÞs2i � c13; F2i ¼ ðe33k1i þ d33k2iÞs2i � e31;

F3i ¼ ½c44ð1þ k1iÞ � e15k2i	si; ði ¼ 1; 2; 3Þ; ð28Þ

and �aaðrÞ, �bbðrÞ, �ccðrÞ ¼ c33�aaðrÞ � e33�bbðrÞ and �ddðrÞ ¼ e33�aaðrÞ þ d33�bbðrÞ are the unknown functions to be de-

termined from the applied loading conditions.
Similarly, we can get the potential functions in the elastic medium in the form,

eUU iðr; zÞ ¼
Z 1

0

1

n
CiðnÞK0

nr
~ssi


 �
cosðnzÞdn; ð29Þ

where CiðnÞ (i ¼ 1; 2) are the unknown functions to be determined by boundary conditions, and Knð Þ is the
modified Bessel function of the second kind of order n.

The field equations are in the elastic medium obtained in the forms,

uðeÞ
z ¼ �

X2
i¼1

~kki

Z 1

0

CiðnÞK0

nr
~ssi


 �
sinðnzÞdn;

uðeÞ
r ¼ �

X2
i¼1

1

~ssi

Z 1

0

CiðnÞK1

nr
~ssi


 �
cosðnzÞdn;

rðeÞ
r ¼ ~cc11

2

X2
i¼1

1

~ss2i

Z 1

0

nCiðnÞ K0

nr
~ssi


 ��
þ K2

nr
~ssi


 �

cosðnzÞdn

� ~cc13
X2
i¼1

~kki

Z 1

0

nCiðnÞK0

nr
~ssi


 �
cosðnzÞdn;

rðeÞ
rz ¼

X2
i¼1

eFF2i

~ss2i

Z 1

0

nCiðnÞK1

nr
~ssi


 �
sinðnzÞdn;

ð30Þ

where

eFF1i ¼ ~cc33~kki~ss2i � ~cc13; eFF2i ¼ ~cc44ð1þ ~kkiÞ~ssi ði ¼ 1; 2Þ: ð31Þ
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Eqs. (22)–(25), the following coefficients are obtained:

ðCase 1Þ �aaðrÞ ¼ d33�rrðrÞ þ e33DðrÞ
c33d33 þ e233

; �bbðrÞ ¼ c33DðrÞ � e33�rrðrÞ
c33d33 þ e233

; �ccðrÞ ¼ �rrðrÞ; �ddðrÞ ¼ DðrÞ;

ð32Þ

ðCase 2Þ �aaðrÞ ¼ �eeðrÞ; �bbðrÞ ¼ EðrÞ; �ccðrÞ ¼ c33�eeðrÞ � e33EðrÞ; �ddðrÞ ¼ e33�eeðrÞ þ d33EðrÞ;
ð33Þ

ðCase 3Þ �aaðrÞ ¼ �rrðrÞ þ e33EðrÞ
c33

; �bbðrÞ ¼ EðrÞ; �ccðrÞ ¼ �rrðrÞ; �ddðrÞ ¼ e33�rrðrÞ þ ðc33d33 þ e233ÞEðrÞ
c33

;

ð34Þ

ðCase 4Þ �aaðrÞ ¼ �eeðrÞ; �bbðrÞ ¼ DðrÞ � e33�eeðrÞ
d33

; �ccðrÞ ¼ ðc33d33 þ e233Þ�eeðrÞ � e33DðrÞ
d33

; �ddðrÞ ¼ DðrÞ:

ð35Þ
From Eqs. (15)–(21), (27) and (30), the following relations between the coefficients are obtained,

B2ðnÞ ¼ M2B1ðnÞ; B3ðnÞ ¼ M3B1ðnÞ;

A1ðnÞ ¼
1

DðnÞ
X3
i¼1

MiðF4i½h22ðnÞh33ðnÞ
�

� h23ðnÞh32ðnÞ	 þ h4iðnÞ½h13ðnÞh32ðnÞ � h12ðnÞh33ðnÞ	

þ h5iðnÞ½h12ðnÞh23ðnÞ � h13ðnÞh22ðnÞ	Þf1iðnÞ þ Minh6i½h13ðnÞh32ðnÞ � h12ðnÞh33ðnÞ	f2iðnÞ

þ Mi

n
h7i½h12ðnÞh23ðnÞ � h13ðnÞh22ðnÞ	f3iðnÞ þ

Mi

n
h8i½h12ðnÞh23ðnÞ � h13ðnÞh22ðnÞ	f4iðnÞ

�
;

A2ðnÞ ¼
1

DðnÞ
X3
i¼1

MiðF4i½h23ðnÞh31ðnÞ
�

� h21ðnÞh33ðnÞ	 þ h4iðnÞ½h11ðnÞh33ðnÞ � h13ðnÞh31ðnÞ	

þ h5iðnÞ½h13ðnÞh21ðnÞ � h11ðnÞh23ðnÞ	Þf1iðnÞ þ Minh6i½h11ðnÞh33ðnÞ � h13ðnÞh31ðnÞ	f2iðnÞ

þ Mi

n
h7i½h13ðnÞh21ðnÞ � h11ðnÞh23ðnÞ	f3iðnÞ þ

Mi

n
h8i½h13ðnÞh21ðnÞ � h11ðnÞh23ðnÞ	f4iðnÞ

�
;

A3ðnÞ ¼
1

DðnÞ
X3
i¼1

MiðF4i½h21ðnÞh32ðnÞ
�

� h22ðnÞh31ðnÞ	 þ h4iðnÞ½h12ðnÞh31ðnÞ � h11ðnÞh32ðnÞ	

þ h5iðnÞ½h11ðnÞh22ðnÞ � h12ðnÞh21ðnÞ	Þf1iðnÞ þ Minh6i½h12ðnÞh31ðnÞ � h11ðnÞh32ðnÞ	f2iðnÞ

þ Mi

n
h7i½h11ðnÞh22ðnÞ � h12ðnÞh21ðnÞ	f3iðnÞ þ

Mi

n
h8i½h11ðnÞh22ðnÞ � h12ðnÞh21ðnÞ	f4iðnÞ

�
;

C1ðnÞ ¼
1

K1ðnb=~ss1Þ
X3
i¼1

g1iI1
nb
si


 �
AiðnÞ

�
þ Mig2if1iðnÞ

�
;

C2ðnÞ ¼
1

K1ðnb=~ss2Þ
X3
i¼1

g3iI1
nb
si


 �
AiðnÞ

�
þ Mig4if1iðnÞ

�
; ð36Þ
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where

M1 ¼ 1; M2 ¼
F31k23s3 � F33k21s1
F33k22s2 � F32k23s3

; M3 ¼
F32k21s1 � F31k22s2
F33k22s2 � F32k23s3

;

DðnÞ ¼ h11ðnÞ½h22ðnÞh33ðnÞ � h23ðnÞh32ðnÞ	 þ h12ðnÞ½h23ðnÞh31ðnÞ � h21ðnÞh33ðnÞ	

þ h13ðnÞ½h21ðnÞh32ðnÞ � h22ðnÞh31ðnÞ	;

f1iðnÞ ¼
2

p

Z 1

0

gB1ðgÞJ1ðgbÞ
g2s2i þ n2

dg; f2iðnÞ ¼
2

p

Z 1

0

B1ðgÞJ0ðgbÞ
g2s2i þ n2

dg;

f3iðnÞ ¼
2

p

Z 1

0

g2B1ðgÞJ0ðgbÞ
g2s2i þ n2

dg; f4iðnÞ ¼
2

p

Z 1

0

g2B1ðgÞJ2ðgbÞ
g2s2i þ n2

dg;

F4i ¼ ½e15ð1þ k1iÞ þ d11k2i	si;

ð37Þ

and the quantities hjiðnÞ (j ¼ 1–5, i ¼ 1–3), hji (j ¼ 6–8, i ¼ 1–3) and gji (j ¼ 1–4, i ¼ 1–3) are given by

Eq. (A.1) in Appendix A.

From Eq. (14), a system of dual integral equation is obtained,

�
Z 1

0

n
F11

s21
I0

nr
s1


 �
A1ðnÞ

�
þ F12

s22
I0

nr
s2


 �
A2ðnÞ þ

F13

s23
I0

nr
s3


 �
A3ðnÞ



dn

þ
Z 1

0

n½M1F11 þ M2F12 þ M3F13	B1ðnÞJ0ðnrÞdn ¼ ��ccðrÞ ð06 r < aÞ;Z 1

0

½M1k11s1 þ M2k12s2 þ M3k13s3	B1ðnÞJ0ðnrÞdn ¼ 0 ða < r < bÞ:

ð38Þ

Eq. (38) may be solved by using the function wðaÞ defined by

B1ðnÞ ¼
Z a

0

wðaÞ sinðnaÞda; ð39Þ

where wð0Þ ¼ 0.

Inserting Eqs. (36), (37) and (39) into Eq. (38), we obtain a Fredholm integral equation of the second

kind in the form,

wðaÞ þ
Z a

0

wðbÞLða; bÞdb ¼ 2

pm0

Z a

0

r�ccðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p dr; ð40Þ

where

m0 ¼ �ðM1F11 þ M2F12 þ M3F13Þ; ð41Þ
and Lða; bÞ is given by Eq. (B.1) in Appendix B.

Each kind of the field intensity factors is obtained in the form,

Kr ¼ KI ¼ lim
r!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � aÞ

p
rzðr; 0Þ ¼

ffiffiffi
p
a

r
m0wðaÞ; ð42Þ

KD ¼ lim
r!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � aÞ

p
Dzðr; 0Þ ¼

ffiffiffi
p
a

r
m1wðaÞ; ð43Þ

Ke ¼ lim
r!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � aÞ

p
ezðr; 0Þ ¼

ffiffiffi
p
a

r
m2wðaÞ; ð44Þ
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KE ¼ lim
r!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � aÞ

p
Ezðr; 0Þ ¼

ffiffiffi
p
a

r
m3wðaÞ; ð45Þ

where

m1 ¼ �½F21M1 þ F22M2 þ F23M3	;
m2 ¼ �½k11s21M1 þ k12s22M2 þ k13s23M3	;
m3 ¼ �½k21s21M1 þ k22s22M2 þ k23s23M3	;

ð46Þ

and Kr, KD, Ke and KE are the stress intensity factor, electric displacement intensity factor, strain intensity

factor and electric field intensity factor, respectively.

4. Numerical results and discussion

Material properties of PZT-6B ceramic are as follows (Wang and Huang, 1995; Wang and Zheng, 1995),

elastic constants (1010 N/m2): c11 ¼ 16:8, c12 ¼ 6:0, c13 ¼ 6:0, c33 ¼ 16:3, c44 ¼ 2:71;
piezoelectric constants (C/m2): e15 ¼ 4:6, e31 ¼ �0:9, e33 ¼ 7:1;
dielectric permittivities (10�10 F/m): d11 ¼ 36, d33 ¼ 34;

and the material properties of several elastic media are shown in Table 1.

4.1. Example 1. Uniform loads

Let the following loads be applied:

rzðr;1Þ ¼ r0 ðfor Cases 1 and 3Þ;
ezðr;1Þ ¼ e0 ðfor Cases 2 and 4Þ;
Dzðr;1Þ ¼ �D0; ðfor Cases 1 and 4Þ;
Ezðr;1Þ ¼ �E0; ðfor Cases 2 and 3Þ;

ð47Þ

where r0, e0, D0 and E0 are the magnitudes of applied constant stress, strain, electric displacement and

electric field, respectively. ‘‘)’’ in Eq. (47) means that the electric loading directions are the same as the

poling direction as shown in Fig. 1. In this case, a Fredholm integral equation of the second kind is ob-
tained from Eq. (40) in the form,

WðNÞ þ
Z 1

0

WðHÞKðN;HÞdH ¼ N; ð48Þ

Table 1

The material properties of elastic medium (1010 N/m2)

Material Elastic constants

c11 c12 c13 c33 c44

Boron-epoxy 2.94 1.37 2.46 20.89 0.81

Graphite epoxy 0.83 0.28 0.03 8.68 0.42

E-glass epoxy 1.49 0.66 0.52 4.73 0.48
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where

KðN;HÞ ¼ aLðaN; aHÞ;

N ¼ a
a
; H ¼ b

a
; WðxÞ ¼ p

2

m0

c0a
wðaxÞ;

ð49Þ

c0 ¼ r0 ðCases 1 and 3Þ
¼ c33e0 þ e33E0 ðCase 2Þ

¼ ðc33d33 þ e233Þe0 þ e33D0

d33
ðCase 4Þ:

ð50Þ

The field intensity factors become as follows:

Kr ¼ 2

p

ffiffiffiffiffiffi
pa

p
c0Wð1Þ; ð51Þ

KD ¼ 2

p

ffiffiffiffiffiffi
pa

p m1

m0

c0Wð1Þ; ð52Þ

Ke ¼ 2

p

ffiffiffiffiffiffi
pa

p m2

m0

c0Wð1Þ; ð53Þ

KE ¼ 2

p

ffiffiffiffiffiffi
pa

p m3

m0

c0Wð1Þ: ð54Þ

Eq. (48) is solved numerically using Gaussian quadrature formula. From the above equations we can

conclude that in Case 1 the stress intensity factor is dependent on the mechanical load, and the electric

displacement intensity factor depends on the material properties and the mechanical load, but not on the

electrical load. These tendencies are consistent with those of Gao and Fan (1999a) in two-dimensional

mixed mode problem and those of Yang and Lee (2001) in three-dimensional opening mode problem. Also

the field intensity factors are independent upon the electrical loads under constant stress loads (Cases 1 and
3), but dependent upon them under constant strain loads (Cases 2 and 4). These results agree with those of

Shindo et al. (1997) and Zhang and Hack (1992) in two-dimensional mode III problem.

The change of the normalized stress intensity factor for Case 1 according to the ratio of crack radius to

PZT-6B piezoelectric cylinder radius and various elastic media under uniform loads are shown in Fig. 2.

The normalized stress intensity factor increases with increase of the ratio a=b for graphite epoxy and E-glass

epoxy, but it decreases for boron-epoxy.

According to Satapathy and Parhi (1979), the similar behavior of stress intensity factor is obtained in the

crack problem for an elastic cylinder surrounded by an another elastic infinite medium. They showed that
the stress intensity factor may increase or decrease according to the ratio of crack radius to cylinder radius

with the combination of inside and outside materials. From the observation for the effect of various ma-

terial properties in our piezoelectric problem, we find out that c33 only affects the increase or decrease of the

stress intensity factor with the variation of the ratio of the crack radius to the cylinder radius. Fig 3 shows

that the stress intensity factor increases with increase of the ratio a=b when c33 of the inside piezoelectric

medium is larger than ~cc33 of the outside elastic medium. Even though c44 affects the increase or decrease of
the stress intensity factor in mode III problem (Sih and Chen, 1981), in model I problem c33 does.

The variations of the normalized field intensity factors for Case 1 according to the ratio of crack radius
to PZT-6B piezoelectric cylinder radius in the case surrounded by graphite epoxy under uniform loads are

shown in Fig. 4. It is shown that the normalized field intensity factors increase with increase of the ratio
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a=b, and it is noted that the stress intensity factor and the electric field intensity factor are much larger than

the strain intensity factor and the electric displacement intensity factor.

Fig. 5 shows the change of Kr=2ða=pÞ1=2 with the applied electric field E0 and the ratio a=b in the case

surrounded by graphite epoxy under uniform loads. It is noted that the crack size affects a little to the stress

intensity factor in case of electric loading alone. And it is concluded from Fig. 5 that cracks may or not
propagate according to the direction and value of the applied electric field. This tendency is different from

Fig. 2. Change of the normalized stress intensity factor with the ratio of crack radius to PZT-6B cylinder radius and several elastic

media under uniform loads in Case 1.

Fig. 3. Change of the normalized stress intensity factor with the ratio of crack radius to PZT-6B cylinder radius and ~cc33 of the boron
epoxy under uniform loads in Case 1.
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the results of the electric impermeable condition on the crack surface (Pak, 1990), and agrees with the

experimental observations presented by Park and Sun (1995b).
Park and Sun (1995b) got the stress intensity factor, the total energy release rate and the mechanical

strain energy release rate for a crack with the electric impermeable condition in an infinite piezoelectric

medium for the three fracture mode theoretically and the experimentally. Their analytic results showed that

the electric loading alone cannot affect the stress intensity factor and the total energy release rate becomes

Fig. 4. Change of the normalized field intensity factors with the ratio of crack radius to PZT-6B cylinder radius in the case surrounded

by graphite epoxy under uniform loads in Case 1.

Fig. 5. Change of normalized stress intensity factor Kr=2ða=pÞ1=2 with the applied electrical field E0 in case of PZT-6B ceramic and

graphite epoxy under uniform loads in Case 2.
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negative, and they insisted that the stress intensity factor and the total energy release rate are not suitable

for describing the fracture behavior of piezoelectric ceramics. But it is important to remember that those

results were caused by the electrical impermeable condition on the crack surfaces.

The tendency of the variation of the stress intensity factor with the applied electric displacement D0 in
Case 4 were observed to the similar with that with the electric field in Case 2.

4.2. Example 2. Ring-shaped load

Let normal loading per a unit area, p apply on the region of r1 6 r6 r2, 0�6 h6 360� and the electrical

loads be arbitrary as shown in Fig. 6. Then, the applied loads can be expressed as follows:

rzðr;1Þ ¼
p; for r1 6 r6 r2;

0; elsewhere;

�
ðfor Cases 1 and 3Þ;

Dzðr;1Þ ¼ DðrÞ; ðfor Case 1Þ;
Ezðr;1Þ ¼ EðrÞ; ðfor Case 3Þ:

ð55Þ

Using Eqs. (32), (34) and (55), a Fredholm integral equation of the second kind is obtained from Eq. (40)

in the form,

Fig. 6. Piezoelectric cylinder with a penny shaped crack surrounded by an infinite elastic medium under a ring-shaped normal

mechanical load and general electrical load.
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WðNÞ þ
Z 1

0

WðHÞKðN;HÞdH ¼ N; ð56Þ

where

N ¼ a
a
; H ¼ b

a
; WðxÞ ¼ p

2

m0

pa
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðr1=aÞ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðr2=aÞ2

q wðaxÞ; ð57Þ

and the kernel KðN;HÞ is the same as Example 1.
The field intensity factors become as follows:

Kr ¼ 2

p

ffiffiffiffiffiffi
pa

p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

1

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

2

q �
Wð1Þ; ð58Þ

KD ¼ 2

p

ffiffiffiffiffiffi
pa

p m1

m0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

1

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

2

q �
Wð1Þ; ð59Þ

Ke ¼ 2

p

ffiffiffiffiffiffi
pa

p m2

m0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

1

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

2

q �
Wð1Þ; ð60Þ

KE ¼ 2

p

ffiffiffiffiffiffi
pa

p m3

m0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

1

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

2

q �
Wð1Þ; ð61Þ

where a1 ¼ r1=a and a2 ¼ r2=a.
The Fredholm integral equation is solved numerically by the same method as Example 1. Various field

intensity factors are obtained from Eqs. (58)–(61). In this example, only Cases 1 and 3 are considered and

the results that the field intensity factors are not affected from the applied electrical loads are obtained.

Fig. 7 shows the variation of the normalized stress intensity factor with the ratio of crack radius to

cylinder radius a=b under a ring-shaped mechanical load (a2 � a1 ¼ 0:1) and an arbitrary electrical load in

Fig. 7. Change of the normalized stress intensity factor with the ratio of crack radius to PZT-6B cylinder radius under a ring-shaped

mechanical load (a2 � a1 ¼ 0:1) and an arbitrary electrical load in Case 1.
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Case 1. The normalized stress intensity factor decreases with increase of the ratio a=b in case of boron
epoxy and increases with increase of a=b in case of graphite epoxy, and the value increases as the position of

the applied load approaches near the crack border.

The changes of the normalized stress intensity factor with the ratio of crack radius to cylinder radius a=b
under a ring-shaped mechanical load (a2 ¼ 0:9, a1 ¼ 0:0; 0:4; 0:8) and an arbitrary electrical load in Case 1

are shown in Fig. 8. As the value of a1 decreases, the normalized stress intensity factor increases. When the

Fig. 8. Change of the normalized stress intensity factor with the ratio of crack radius to PZT-6B cylinder radius under a ring-shaped

mechanical load (a2 ¼ 0:9, a1 ¼ 0:0; 0:4; 0:8) and an arbitrary electrical load in Case 1.

Fig. 9. Change of the normalized stress intensity factor with the ratio of crack radius to PZT-6B cylinder radius under a circular

mechanical load and an arbitrary electrical load in Case 1.
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value of a1 becomes from 0.8 to 0.4, the normalized stress intensity factor increases very much, but when

that becomes from 0.4 to 0.0, the value increases a little. This implies that the load apart from the crack

border affects the normalized stress intensity factor a little.

Fig. 9 shows the variation of the normalized stress intensity factor with the ratio of crack radius to
cylinder radius a=b under a circular mechanical load and an arbitrary electrical load in Case 1. It is the

limiting case as a1 becomes 0. Also as the area of the applied load increase, the normalized stress intensity

factor increases. And as a2 becomes near 1.0, the stress intensity factor increases very much.

5. Conclusions

The solutions of the field equations and the field intensity factors for a penny shaped crack in a
transversely isotropic piezoelectric ceramic cylinder surrounded by an infinite elastic medium under in-

plane mechanical and electrical loads are obtained by the potential theory and the integral transform

method. The continuous electric boundary conditions are used on the crack surfaces and the justification of

them are discussed. Various field intensity factors are obtained from the solution of a Fredholm integral

equation of the second kind, and the field intensity factors under the uniform mechanical and electrical

loads as well as a ring-shaped mechanical load with an arbitrary electrical load are shown numerically. The

tendency of the field intensity factors with the ratio of crack radius to cylinder radius is different for the

various elastic medium. When the boron-epoxy is used, the field intensity factors decrease with increase of
the ratio of crack radius to cylinder radius. But, the tendency is opposite for graphite-epoxy and E-glass

epoxy. This behavior is due to the ratio of material properties c33=~cc33 (inside medium/outside medium).

Therefore, we can reduce the fracture of the electric equipments by selecting the surrounded elastic material

properly.

The stress intensity factor may increase or decrease according to the electric loading condition in Cases 2

and 4, and this tendency agnrees with the previous experimental results (Park and Sun, 1995b).

Appendix A

The hjiðnÞ (j ¼ 1–5, i ¼ 1–3), hji (j ¼ 6–8, i ¼ 1–3) and gji (j ¼ 1–4, i ¼ 1–3) in Eq. (36) are as follows:

h1iðnÞ ¼
F4i

s2i
I1

nb
si


 �
;

h2iðnÞ ¼ k1iI0
nb
si


 �
� ~kk1g1iI1

nb
si


 �
K0

nb
~ss1


 ��
K1

nb
~ss1


 �

� ~kk2g3iI1
nb
si


 �
K0

nb
~ss2


 ��
K1

nb
~ss2


 �
;

h3iðnÞ ¼
F5i

s2i
I0

nb
si


 �
� c11
2s2i

I2
nb
si


 �
�
eFF31

~ss21
g1iI1

nb
si


 �
K0

nb
~ss1


 �,
K1

nb
~ss1


 �

þ ~cc11
2~ss21

g1iI1
nb
si


 �
K2

nb
~ss1


 �,
K1

nb
~ss1


 �
�
eFF32

~ss22
g3iI1

nb
si


 �
K0

nb
~ss2


 �,
K1

nb
~ss2


 �

þ ~cc11
2~ss22

g3iI1
nb
si


 �
K2

nb
~ss2


 �,
K1

nb
~ss2


 �
;
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h4iðnÞ ¼ ~kk1g2iK0

nb
~ss1


 ��
K1

nb
~ss1


 �
þ ~kk2g4iK0

nb
~ss2


 ��
K1

nb
~ss2


 �
;

h5iðnÞ ¼
eFF31

~ss21
g2iK0

nb
~ss1


 �,
K1

nb
~ss1


 �
� ~cc11

2~ss21
g2iK2

nb
~ss1


 �,
K1

nb
~ss1


 �

þ
eFF32

~ss22
g4iK0

nb
~ss2


 �,
K1

nb
~ss2


 �
� ~cc11

2~ss22
g4iK2

nb
~ss2


 �,
K1

nb
~ss2


 �
;

h6i ¼ �k1isi; h7i ¼ F5isi; h8i ¼ � c11
2

si;

g1i ¼
1

~cc44ð~kk2 � ~kk1Þ
~ss1
si

F3i

si

 
�
eFF22

~ss2

!
; g2i ¼

1

~cc44ð~kk2 � ~kk1Þ
~ss1
~ss2
ðsieFF22 � ~ss2F3iÞ;

g3i ¼
1

~cc44ð~kk2 � ~kk1Þ
~ss2
si

eFF21

~ss1

 
� F3i

si

!
; g4i ¼

1

~cc44ð~kk2 � ~kk1Þ
~ss2
~ss1
ð~ss1F3i � sieFF21Þ;

ðA:1Þ

where

F5i ¼ ðc13k1i � e31k2iÞs2i �
c11
2
; eFF3i ¼ ~cc13~kki~ss2i �

~cc11
2
:

Appendix B

The Lða; bÞ in Eq. (40) is as follows:

Lða; bÞ ¼ 4

p2m0

X3
i¼1

X3
j¼1

Miejkl
F1j

sisj

Z 1

0

1

MðnÞ sinh
na
sj


 �
sinh

nb
si


 �
F4i

si
h2kðnÞh3lðnÞK1

bn
si


 ��

þ h4iðnÞ
si

h3kðnÞh1lðnÞK1

bn
si


 �
þ h5iðnÞ

si
h1kðnÞh2lðnÞK1

bn
si


 �
þ h6i

si
h3kðnÞh1lðnÞK0

bn
si


 �
þ h7i

s2i
h2kðnÞh1lðnÞK0

bn
si


 �
þ h8i

s2i
h1kðnÞh2lðnÞK2

bn
si


 ��
dn; ðB:1Þ

where

ejkl ¼
1; for an even permutation of 123;
�1; for an odd permutation of 123;
0; otherwise;

8<: ðk; l ¼ 1; 2; 3Þ:
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